Distributions of the Maximum Likelihood and Minimum Contrast Estimators Associated with the Fractional Ornstein-Uhlenbeck Process

نویسنده

  • Katsuto Tanaka
چکیده

We discuss some inference problems associated with the fractional Ornstein-Uhlenbeck (fO-U) process driven by the fractional Brownian motion (fBm). In particular, we are concerned with the estimation of the drift parameter, assuming that the Hurst parameter H is known and is in [1/2, 1). Under this setting we compute the distributions of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) for the drift parameter, and explore their distributional properties by paying attention to the influence ofH and the sampling spanM . We shall also derive the asymptotic distributions of the two estimators as M becomes large. We further deal with the ordinary least squares estimator (OLSE) and examine the asymptotic relative efficiency. It is shown that the MCE is asymptotically efficient, while the OLSE is inefficient. We also consider the unit root testing problem in the fO-U process and compute the power of the tests based on the MLE and MCE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviations for the Ornstein-Uhlenbeck process with shift

We investigate the large deviation properties of the maximum likelihood estimators for the Ornstein-Uhlenbeck process with shift. We propose a new approach to establish large deviation principles which allows us, via a suitable transformation, to circumvent the classical non-steepness problem. We estimate simultaneously the drift and shift parameters. On the one hand, we prove a large deviation...

متن کامل

Sharp large deviations for the fractional Ornstein - Uhlenbeck process

We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. A.M.S. Classification: 60F10, 60G15, 60J65

متن کامل

Hypothesis Testing in a Fractional Ornstein-Uhlenbeck Model

Consider an Ornstein-Uhlenbeck process driven by a fractional Brownian motion. It is an interesting problem to find criteria for whether the process is stable or has a unit root, given a finite sample of observations. Recently, various asymptotic distributions for estimators of the drift parameter have been developed.We illustrate through computer simulations and through a Stein’s bound that th...

متن کامل

Sample Partitioning Estimation for Ergodic Diffusions: Application to Ornstein-uhlenbeck Diffusion

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, se...

متن کامل

Infill Asymptotics for a Stochastic Process Model with Measurement Error

In spatial modeling the presence of measurement error, or “nugget”, can have a big impact on the sample behavior of the parameter estimates. This article investigates the nugget effect on maximum likelihood estimators for a onedimensional spatial model: Ornstein-Uhlenbeck plus additive white noise. Consistency and asymptotic distributions are obtained under infill asymptotics, in which a compac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017